
Constructive Computer Architecture:

Control Hazards

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

http://csg.csail.mit.edu/6.175October 11, 2017 L12-1



Synchronous 2-Stage Pipeline

http://csg.csail.mit.edu/6.175

Fetch and Execute are concurrently active on 
two different instructions; Fetch guesses the 
next pc and Execute corrects it when 
necessary

we will
call it 
pcF

pc  

ir

ExecuteFetch
invalid

real pc

guessed next pc

fetched instruction, ...

pc ir

next state

October 11, 2017 L12-2



Synchronous
2-Stage Pipeline
rule doPipeline ;

let newInst = iMem.req(pcF);

let newPcF = nap(pcF); 

let newIR= Valid(Fetch2Decode{pc:pcF,ppc:newPcF,

inst:newInst});

if(isValid(ir)) begin

let x = fromMaybe(?, ir); let pc = x.pc; 

let inst = x.inst;

let dInst = decode(inst);

... register fetch, exec, memory op, rf update ...

let nextPC = eInst.brTaken ? eInst.addr : pc + 4;

if (x.ppc != nextPC) begin newIR = Invalid; 

newPcF = nextPC; end

end

pcF <= newPcF; ir <= newIR;

endrule

fetch

execute

http://csg.csail.mit.edu/6.175

pass pcF and predicted pc to 
the execute stage

pc  

ir

ExecuteFetch
invalid

real pc

guessed next pc

fetched instruction, ...

pc ir

October 11, 2017 L12-3



Performance?
rule doPipeline ;

let newInst = iMem.req(pcF);

let newPcF = nap(pcF); 

let newIR=Valid(Fetch2Decode{pc:pcF,

ppc:newPcF,

inst:newInst});

if(isValid(ir)) begin

let x = fromMaybe(?, ir); let pc = x.pc; 

let inst = x.inst;

let dInst = decode(inst);

... register fetch, exec, memory op, 

rf update, nextPC ...

if (x.ppc != nextPC) 

begin newIR = Invalid; 

newPcF = nextPC; end

end

pcF <= newPcF; ir <= newIR;

endrule

fetch

execute

http://csg.csail.mit.edu/6.175

pc  

ir

ExecuteFetch
invalid

real pc

guessed next pc

fetched instruction, ...

pc ir

Notice there is always 
a bubble (dead cycle) 
after every miss-
prediction

The critical path:

max{tnewPcF, tnewIr}

 max{

max{tnap, texec},

max{tiMem, texec}}

 max{tiMem, texec} 

texec includes tdecode etc.

The critical path is not (tiMem + texec) 

October 11, 2017 L12-4



Elastic two-stage pipeline

<inst, pc, ppc>

We replace f2d register by a FIFO to make the machine 
more elastic, that is, Fetch keeps putting instructions 
into f2d and Execute keeps removing and executing 
instructions from f2d

Fetch passes the pc and predicted pc in addition to the 
inst to Execute; Execute redirects the PC in case of a 
miss-prediction

Fetch Execute

PC

http://csg.csail.mit.edu/6.175

pc redirect

f2d

October 11, 2017 L12-5



An elastic Two-Stage pipeline 
rule doFetch ;

let inst = iMem.req(pcF);

let newPcF = nap(pcF); pcF <= newPcF;

f2d.enq(Fetch2Decode{pc:pcF, ppc:newPcF, inst:inst});

endrule

rule doExecute ;

let x = f2d.first; let pc = x.pc; 

let inst = x.inst;

... register fetch, exec, memory op, rf update, 

nextPC ...

if (x.ppc != nextPC) begin pcF <= eInst.addr; 

f2d.clear; end

else f2d.deq;

endrule

Can these rules execute concurrently assuming 
the FIFO allows concurrent enq, deq and clear? 

No, 
double writes in pc

http://csg.csail.mit.edu/6.175

These rules can execute in any order, 
however, the execution of doExecute
may throw away fetched instructionsclear vs deq ?

October 11, 2017 L12-6



For concurrency make pc into an 
EHR  design 1

rule doFetch ;

let inst = iMem.req(pcF[0]);

let newPcF = nap(pcF[0]); 

pcF[0] <= newPcF;

f2d.enq(Fetch2Decode{pc:pcF[0], ppc:newPcF, inst:inst});

endrule

rule doExecute ;

let x = f2d.first; let pc = x.pc; 

let inst = x.inst;

... register fetch, exec, memory op, rf update, 

nextPC ...

if (x.ppc != nextPC) begin pcF[1] <= eInst.addr; 

f2d.clear; end

else f2d.deq;

endrule

http://csg.csail.mit.edu/6.175

Notice, for concurrency, f2d implementation 
must guarantee that (enq < clear) 

doFetch < doExecute

October 11, 2017 L12-7



Concurrency and Correctness 
Fetch < Execute

<inst, pc, ppc>

Once Execute redirects the PC, 
 no wrong path instruction should be executed
 the next instruction executed must be the redirected 

one

Fetch Execute

PC

http://csg.csail.mit.edu/6.175

pc redirect

f2d

Performance?
A dead-cycle or pipeline bubble after 
each miss prediction

Thus, concurrent execution requires (enq < clear)  

October 11, 2017 L12-8



Design 1 Performance
rule doFetch ;

let inst = iMem.req(pcF[0]);

let newPcF = nap(pcF[0]); 

pcF[0] <= newPcF;

f2d.enq(Fetch2Decode{pc:pcF[0], ppc:newPcF, inst:inst});

endrule

rule doExecute ;

let x = f2d.first; let pc = x.pc; 

let inst = x.inst;

... register fetch, exec, memory op, rf update, 

nextPC ...

if (x.ppc != nextPC) begin pcF[1] <= eInst.addr; 

f2d.clear; end

else f2d.deq;

endrule

http://csg.csail.mit.edu/6.175

f2d is guaranteed to be empty after each 
misprediction (the same as the synchronous 
design)

doFetch < doExecute
enq < clear 

October 11, 2017 L12-9



Design 2
rule doFetch ;

let inst = iMem.req(pcF[1]);

let newPcF = nap(pcF[1]); 

pcF[1] <= newPcF;

f2d.enq(Fetch2Decode{pc:pcF[1], ppc:newPcF, inst:inst});

endrule

rule doExecute ;

let x = f2d.first; let pc = x.pc; 

let inst = x.inst;

... register fetch, exec, memory op, rf update, 

nextPC ...

if (x.ppc != nextPC) begin pcF[0] <= eInst.addr; 

f2d.clear; end

else f2d.deq;

endrule

http://csg.csail.mit.edu/6.175

doExecute < doFetch

1. Concurrency: should (clear < enq ) ?
2. Does this design have better performance? 

October 11, 2017 L12-10



Design 2 correctness/concurrency  
Execute < Fetch 

<inst, pc, ppc>

Once Execute redirects the PC, 
 no wrong path instruction should be executed
 the next instruction executed must be the redirected 

one

Fetch Execute

PC

http://csg.csail.mit.edu/6.175

pc redirect

f2d

Performance? No dead-cycle but the critical 
path length is

Thus, concurrent execution requires (clear < enq)

(tiMem + texec) 

Slower clock means every instruction will take longer!

October 11, 2017 L12-11



Takeaway
Get the functionality right before worrying 
about concurrency

Introduce EHRs systematically to avoid rule 
conflicts; analyze various designs for dead 
cycles and critical path lengths

 BSV compiler produces information about conflicts 

 Dead cycles can be estimated by running suitable 
benchmark programs

 Estimation of critical paths is often difficult and 
requires hardware synthesis tools

http://csg.csail.mit.edu/6.175October 11, 2017 L12-12



Killing fetched instructions
In the simple design with combinational memory 
we have discussed so far, all the mispredicted
instructions were present in f2d. So the Execute 
stage can atomically:

 Clear f2d 

 Set pc to the correct target

In highly pipelined machines there can be 
multiple mispredicted and partially executed 
instructions in the pipeline; it will generally take 
more than one cycle to kill all such instructions

Need a more general solution then clearing the f2d FIFO

http://csg.csail.mit.edu/6.175October 11, 2017 L12-13



Epoch: a method to manage 
control hazards

Add an epoch register in the processor state 

The Execute stage changes the epoch 
whenever the pc prediction is wrong and sets 
the pc to the correct value

The Fetch stage associates the current epoch 
with every instruction when it is fetched 

PC

iMem

nap
f2d

Epoch

Fetch Execute

inst

targetPC

The epoch of the 
instruction is examined 
when it is ready to 
execute. If the processor 
epoch has changed the 
instruction is thrown away 

http://csg.csail.mit.edu/6.175October 11, 2017 L12-14



An epoch based solution
rule doFetch ;

let instF=iMem.req(pcF[0]); 

let ppcF=nap(pcF[0]); pcF[0]<=ppcF;

f2d.enq(Fetch2Decode{pc:pcF[0],ppc:ppcF,epoch:epoch,

inst:instF});

endrule

rule doExecute;

let x=f2d.first; let pc=x.pc; let inEp=x.epoch;

let inst = x.inst;

if(inEp == epoch) begin

...decode, register fetch, exec, memory op, 

rf update nextPC ...

if (x.ppc != nextPC) begin pcF[1] <= eInst.addr; 

epoch <= next(epoch); end

end

f2d.deq; endrule

Can these rules execute concurrently ? 

yes

two values for epoch are sufficient

http://csg.csail.mit.edu/6.175October 11, 2017 L12-15



Discussion
Epoch based solution kills one wrong-path 
instruction at a time in the execute stage

It may be slow, but it is more robust in more 
complex pipelines, if you have multiple stages 
between fetch and execute or if you have 
outstanding instruction requests to the iMem

It requires the Execute stage to set the pc and 
epoch registers simultaneously which may result 
in a long combinational path from Execute to 
Fetch

http://csg.csail.mit.edu/6.175October 11, 2017 L12-16



Decoupled Fetch and Execute

<inst, pc, ppc, 
epoch>

<corrected pc, 
new epoch>

In decoupled systems a subsystem reads and 
modifies only local state atomically

 In our solution, pc and epoch are read by both rules

Properly decoupled systems permit greater 
freedom in independent refinement of 
subsystems

Fetch Execute

http://csg.csail.mit.edu/6.175October 11, 2017 L12-17



A decoupled solution using 
epochs

Add fEpoch and eEpoch registers to the processor 
state; initialize them to the same value 

The epoch changes whenever Execute detects  
the pc prediction to be wrong. This change is 
reflected immediately in eEpoch and eventually in 
fEpoch via a message from Execute to Fetch

Associate fEpoch with every instruction when it is 
fetched 

In the execute stage, reject, i.e., kill, the 
instruction if its epoch does not match eEpoch

fEpoch eEpochFetch Execute

http://csg.csail.mit.edu/6.175October 11, 2017 L12-18



Control Hazard resolution
A robust two-rule solution

PC

Inst

Memory

Decode

Register File

Execute

Data

Memory

+4
f2d

FIFO

FIFO

re
d
ir
e
c
t

Execute sends information about 
the target pc to Fetch, which  
updates fEpoch and pc whenever 
it examines the redirect (PC) fifo

fE
p
o
c
h

e
E
p
o
c
h

http://csg.csail.mit.edu/6.175October 11, 2017 L12-19



Two-stage pipeline 
Decoupled code structure

module mkProc(Proc);

Fifo#(Fetch2Execute) f2d <- mkFifo;

Fifo#(Addr) redirect <- mkFifo;

Reg#(Bool) fEpoch <- mkReg(False);

Reg#(Bool) eEpoch <- mkReg(False);

rule doFetch;

let inst = iMem.req(pcF);

...

f2d.enq(... inst ..., fEpoch); 

endrule

rule doExecute;

if(inEp == eEpoch) begin

Decode and execute the instruction; update state;

In case of misprediction,   redirect.enq(correct pc);
end

f2d.deq;

endrule

endmodule

http://csg.csail.mit.edu/6.175October 11, 2017 L12-20



The Fetch rule
rule doFetch;

let inst = iMem.req(pcF);

if(!redirect.notEmpty)

begin

let newPcF = nap(pcF);

pcF <= newPcF;

f2d.enq(Fetch2Execute{pc: pcF, ppc: newPcF, 

inst: inst, epoch: fEpoch});

end

else

begin

fEpoch <= !fEpoch;  pcF <= redirect.first;

redirect.deq;

end

endrule Notice: In case of PC redirection, 
nothing is enqueued into f2d

http://csg.csail.mit.edu/6.175October 11, 2017 L12-21



The Execute rule
rule doExecute;

let x = f2d.first; 

let inst = x.inst; let pc = x.pc; let inEp = x.epoch;

if(inEp == eEpoch) begin

...decode, register fetch, exec, memory op, 

rf update nextPC ...

if (x.ppc != nextPC) begin redirect.enq(eInst.addr); 

eEpoch <= !inEp; end

end

f2d.deq; 

endrule

Can doFetch and doExecute execute concurrently?

yes, assuming CF FIFOs

http://csg.csail.mit.edu/6.175October 11, 2017 L12-22



Epoch mechanism is independent 
of the sophisticated branch 
prediction schemes that we will 
study later

http://csg.csail.mit.edu/6.175October 11, 2017 L12-23


